All win probability models are wrong — Some are useful

How does Matt Ryan sleep at night?

StatsbyLopez

As in the moments following the 2016 US election, win probabilities took center stage in public discourse after New England’s comeback victory in the Super Bowl over Atlanta.

Unfortunately, not everyone was enamored.

While it’s tempting to deride conclusions like Pete’s, it’s also too easy of a way out. And, to be honest,  I share a small piece of his frustration, because there’s a lingering secret behind win probability models:

Essentially, they’re all wrong.

But win probabilities models can still be useful.

To examine more deeply, I’ll compare 6 independently created win probability models using projections from Super Bowl 51. Lessons learned can help us better understand how these models operate.  Additionally, I’ll provide one example of how to check a win probability model’s accuracy, and share some guidelines for how we should better disseminate win probability information.

So, what…

View original post 1,992 more words

Advertisements

Posted on March 8, 2017, in Uncategorized. Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: