The Mets screwed deGrom

Wins are a shitty statistics in baseball.  You can be a great pitcher on a terrible team and end up with a win-loss record that isn’t impressive at all.  For instance you could be Jacob DeGrom and be an outstanding pitcher on an awful team (The Mets were 77-85).  deGrom ended the season with a win-loss record of 10-9 and the Mets were 14-18 in games that he started.  He also ended the season with an ERA of 1.70 and only gave up more than 3 earned runs in an outing once during the entire season (He gave up 4 earned runs on April 10 against Miami).  From May 18th through the end of the season he had 24 quality starts in a row (6+ IP, 3 or fewer runs).  24 QS IN A ROW!

So I wanted to look at how someone could be so dominant could end up with only 10 wins and their team going 14-18 when they started.  So the first thing I looked at was the scores of these games.  Maybe the Mets weren’t scoring a ton of runs.  In 21 of deGrom’s 32 starts (65.625%) the Mets scored three or fewer runs and the Mets were 4-17 in these games.  (The league average for runs per game in 2018 was 4.45.)  And in only 7  games (21.875%) did the mets score 6 or more runs.  They were 6-1 in these games.  Below is the scatterplot for the scores of Mets games that deGrom started in the 2018 season.

 

Screen Shot 2018-10-09 at 2.36.12 PM

 

 

Next I looked at the number of earned runs that deGrom gave up in his start and how many runs the Mets’ opponent ended up with at the end of the game.  The plot below shows the number of earned runs allowed by deGrom in an outing versus the total number of runs allowed by the mets.  In only 26 of deGrom’s 32 starts the Mets managed to give up at least one run that wasn’t credited to deGrom (This could either be the bullpen giving up runs, or unearned runs because of errors.  Either way, not deGrom’s fault).

Screen Shot 2018-10-09 at 2.36.23 PM

Think about this.  In deGrom’s 32 starts he pitched a total of 217 innings and gave up 41 earned runs.  That’s about 75.35% of the innings in those games (assuming all games went a full 9 innings).  Between unearned runs and runs given up by other Mets’ pitchers, the Mets allowed their opponents 63 more runs.  Think about that.  In games when deGrom started he pitched 217 of the total innings and the Met’s needed to only get through 71 more innings.  63 runs that weren’t deGroms fault in 71 innings.  While this isn’t exactly a runs per game calculation 63 runs in 71 innings is almost 8 runs per 9 innings.  Did I mention the Met’s were bad?

So how many games should the Met’s have won with deGrom starting this year?  I sort of checked the answer to this question by looking at home many wins the Mets would have had in deGrom starts if the bullpen was simply league average.  To do this, I computed the league average runs per out rate and then drew from a Poisson variable with this mean take n draws where n is the number of outs left in the game.  I then added up the number of runs given up by the bull pen and added the to deGrom’s ER for that game.  I then counted how many times the Mets would have won a game (with ties gonig 50-50 to each team).  The mean is 18.85 with a median of 19 wins and 95% of the simulations had a win total between 16-22.    Basically this means that, in my crude calculations, the Met’s bullpen cost the Mets somewhere between 2 and 8 wins in deGrom’s starts.

The histogram of the simulated values of the number of Mets wins if deGrom had a league average bullpen can be seen below.  Almost never is it 14, the actual win total for the Mets in deGrom’s starts.

 

Screen Shot 2018-10-09 at 2.36.33 PM

So should deGrom win the Cy Young Award with a 10-9 record?   Well his ERA was 1.70.  The next best in the National league was Nola at 2.37.  And the only other pitcher in the entire league to end the season with an ERA under 2 was Blake Snell (1.89) who is basically a lock to win the AL Cy Young after going 21-5.  So would I give it to deGrom?  Probably.  But I wouldn’t be that upset if Nola won it in the NL.

The one thing we can all agree on is the Mets suck.

Finally, you can see my code here.  It’s a mess, but there it is: https://github.com/gjm112/StatsInTheWild/blob/master/deGrom.R

Cheers.

Advertisements

Florence is huge. Harvey was huger.

Last summer I wrote about how much water hurricane Harvey had dropped on the Houston area.  And I decided to revisit this with Florence making landfall.  Florence is expected to drop 10 trillion gallons of water on the Carolinas and the surrounding regions.  That’s a ton of water.  Here it is relative to the great lakes.

lakes1_florence

But here’s the crazy part.  Harvey dropped 25 trillions gallons of water on Houston! Florence is going to drop more water than the Great Salt Lake.  And Harvey dropped 2.5 times that!!!!  Holy crap Harvey.

lakes2_florence

Cheers.

World Cup Summary through the Quarter Finals

WCadvancements.png

World Cup Advancement Scenarios

Update: Someone on Twitter suggested that these advancement grids should be weighted by how likely the scenario is.  Here is what those looked like before the last games of Groups G and H.

Each team in the World Cup is through 2 games and every team has one game left in the group stage.  Below you will find graphics for each teams advancement scenarios based on the two remaining games in their group.

Key:

  • Green indicates that a team will win their group.
  • Yellow means they finish second, and red means they are eliminated.
  • Light green means they are tied for first after points and goal differential and the winner is determined by further tie breakers.
  • Orange indicates a tie for second after points and goal differential and the team that moves on is determined by further tie breakers.
  • Gray indicates a three way tie after points and goal differential and further tie breakers are applied to decide who moves on.

Group A

This is a pretty boring group.

  • Russia wins the group with a win or tie.
  • Uruguay wins the group with a win.
  • Egypt is out.
  • Saudi Arabia is out.

ScenariosGroupA

Group B

Group B is much more interesting that A.

  • Morocco has been eliminated.
  • Iran advances with a win OR a tie and Morocco wins by 2 or more over Spain.  If Morocco wins by 1 over Spain and Iran wins, it goes to goals for as a tie breaker.  Iran can actually still win the group with a win and a Morocco win or tie.
  • Portugal advances with a win or tie.  They can also advance with a loss and a Morocco win.  As long as Morocco beats Spain by more than Portugal loses to Iran.
  • Spain advances in basically all scenarios EXCEPT a loss and an Iran tie OR a loss and a Morocco win by more than Iran beats Portugal.

ScenariosGroupB

Group C

  • France is through.  They can win the group with a win or a tie over Denmark.
  • Denmark advances unless they lose and Australia wins.
  • Australia gets in with a win and a loss by Denmark.  If Australia wins by 1 and France wins by 1, Denmark and Australia tie for second and the team with more goals scored would advance.  If it’s still tied the rest of the tie breakers would be applied.
  • Peru is elimnated.

ScenariosGroupC

Group D

  • Croatia is through.  The win the group unless they lose and Nigeria wins AND Nigeria can make up a goal differential of 5.
  • Nigeria advances with any win and can advance with a tie as long as Iceland doesn’t win by 3 or more.
  • Iceland can advance with a win and an Argentina win or tie.  But they still need to make up a goal differential of 2.
  • Argentina advance with a win and a Croatia win or tie.  They can also advance with a win and an Iceland win, but they would need to make up the 1 goal differential with Iceland.

ScenariosGroupD

Group E

  • Brazil advances with a win or tie.  They can still advance with a loss as long as Costa Rica wins and Brazil maintains its 1 goal differential advantage over Switzerland.
  • Switzerland is through with a win or tie.  They also advance with any Brazil win.  They can also advance with a loss as long as Serbia beats Brazil and they can make up the 1 goal differential behind Brazil.
  • Serbia advances with a win.  Or they can advance with a tie and a Costa Rica win.
  • Costa Rica is eliminated.
  • ScenariosGroupE

Group F

Group F is nuts.

  • Mexico is 2-0-0 and hasn’t clinched yet.  They win the group with a win or a tie and there are even some scenarios where they win the group with a one goal loss and a South Korean tie or victory.
  • Germany, who was almost eliminated by Sweden, advances with a win* or a tie and a Mexico win.  Germany will tie for second if they tie and Mexico ties or if they lose by 1 and Mexico wins.
  • Sweden advance with a win and a German loss.  Or a tie and German loss.  Or a win and a German tie.  In fact they most likely advance with a win, with a few exceptions*.
  • South Korea, who is currently sitting on two losses and still somehow advance.  They simply need to beat Germany by 2 and have Mexico beat Sweden.  Simple……

*If Sweden wins by 1 and Germany wins by 1, Sweden, Germany, and Mexico would be in a three way tie for first with 6 points each and the same goal differential.  That means some team with 6 point would not advance.  Heartbreaking.  6 points is a lot.

ScenariosGroupF

Group G

  • England is through and wins the group with a win over England.
  • Belgium is through and wins the group with a win over Belgium.
  • Tunisia is eliminated.
  • Panama is eliminated.

If Belgium and England tie, all the tiebreakers are tied down to fair play points and the winner of the group will be chosen based on who has fewer yellow cards.

ScenariosGroupG

Group H

  • Japan is through with a win or tie.  They can also advance with a loss and a Senegal win.
  • Senegal is through with a win or tie.  They can also advance with a loss and a Columbia win but that would come down to goal differential to break their tie with Japan.
  • Columbia advances with any win or with a tie and a Poland win.
  • Poland is eliminated.

ScenariosGroupH

Fun with NBA Drafts, Rosters, Convex Hulls and Plotly.

So I was watching game 1 of the NBA finals, and I got to thinking about how some of these players have been around for a long time in the NBA  (Lebron was drafted in 2003!!!)  So I to basketball reference and looked back at some old drafts.  Then I got the idea to scrape drafts and current rosters to see what each current NBA team looks like in terms of the years and positions in a draft.  This led to me staying up way past my bed time screwing around with rvest and plotly.

What I started with was a scatter plot of draft position on the x-axis versus year drafted on the y-axis with each point having the color of their team. That’s easy enough to do in ggplot.  But what I really wanted to do was make it interactive so that when you clicked on a point, all the other points for the team will also highlight.  Now on Thursday night/very early Friday morning, I had no idea how to do this.  And it drove me F-ing crazy until like 2 or 3 in the morning.  You think I’m kidding, but look at my fitbit sleep Friday night.  That has nothing to do with a kid; I just couldn’t figure out how to do this.

Screenshot_20180603-001825.png

So Friday I wake up at like 6 barely functional, get baby out the door, go to my only meeting of the day, and then I happened to be having lunch with Carson Sievert who was in Chicago for an R conference.  So I mention this problem to him after we finished eating tacos, and he casually pulls out his laptop and shows me:

SharedData$new(~Team)

That’s it.  That’s all you need to do to make that work.  The full plot code is then:

draft2 %>% SharedData$new(~Team) %>% plot_ly(x = ~Rk,y = ~Year, color = ~Team, text = ~paste(Player,Team), colors = pal)

That’s it.  Check out the plot it makes here!

Next what I wanted to do was add some convex hulls around the points.  Apparently this is super easy to do too using geom_polygon and the chulls function.  Check out the convex hulls plot here.  At first it looks like a mess, but double click on the legend on the right to choose what to add to the plot.  For instance, below is a screen show of the convex hulls of the final 4 teams in the NBA playoffs. What’s so notable about these teams is that Golden State, Cleveland and Houston have very similar shapes indicating that their teams are made up of some very high draft picks from several years ago, but notably no high draft picks from very recently.  But look at Boston.  Totally different shape mostly in the upper left corner (indicating high draft picks in very recent years).  Go play around with that plot.  It’s really interesting.

Screen Shot 2018-06-03 at 12.06.12 AM.png

What I think I’d like to do next is to see how these convex hulls change over time for an individual team.  Or if someone has some free time you can take my code and modify it to do that.  My full github code for scraping the data and making the plots here.

Go Cavs?

Cheers.

 

The best and worst games this year according to openWAR

Batting

Best

April 3, 2018 – Yankees vs Rays – Didi Gregorius:  6.58 RAA.bat, 4-4, BB, 3 R, 8 RBI, Double, 2 HR

  • Bases Empty – Double
  • Runners on 1st and 3rd – Homerun
  • Runner on 1st – Walk
  • Runners on 1st and 3rd – Homerun
  • Bases Loaded – Single

Worst

April 13, 2018 – Angels vs Royals – Abraham Almonte: -3.09 RAA.bat, 0-5, K, 2 GIDP

  • Bases Empty – Strikeout
  • Runners on 1st and 2nd – Grounded into Double Play
  • Runner on 3rd – Groundout
  • Bases loaded – Groundout
  • Runner on 1st – Grounded into Double Play

Pitching

Best

April 9, 2018 – Diamondbacks at Giants – Zack Godley:  4.32 RAA.pitch, 7 IP, 4 H, 9 K, 0 ER, 23 Batters Faced

  1. Lineout – K – K
  2. Single – K – GIDP
  3. K – K – K
  4. Groundout – K – K
  5. Single – Forceout – Single – Pop Out – Groundout
  6. Groundout – Groundout – K
  7. Single – Forceout – GIDP

Worst

April 7, 2018 – Marlins at Phillies – Dillon Peters: -7.56 RAA.pitch, 2.2 IP, 9 H, 9 ER, 3 BB, 3 K, 2 HR, 19 Batters Faced

  1. Walk – Single- Single – Walk – K – HR – Flyout – K
  2. Single – GIDP – Groundout
  3. K – Single – Single – Walk – HR – Single – Pop Out – Single

Baserunning

Best

April 15, 2018 – Rockies vs Nationals – Michael Taylor:  1.59 RAA.br

  1. Walk – Advances to 2B on a sac bunt – Advanced to third on walk – Scores on passed ball
  2. Double to LF – Steals 3rd – Scores on passed ball

Worst

May 6, 2018 – Rockies vs Mets – David Dahl: -1.49 RAA.br

  1. Single – Steals 2B (Arenado then walks, Dahl gets no credit for the steal!  This needs to be fixed!)
  2. Double – Thrown out trying to advance to third on a ground out to the shortstop.

 

Full openWAR rankings

Cheers.

openWAR 2018: Mike Trout and batting runs above average

One of the nice things about openWAR is that you can compute it over any time period and you can look at its individual components.  Here I’ve looked at Mike Trout’s batting component in openWAR (raa.bat) over the course of the 2018 season.  His best game performance so far in terms of hitting was on 4/8/2018 when he amasses 1.95 raa.bat by going 2-3 with a HR, 2RBI, a walk and a strikeout.  His worst game so far was worth 1.62 raa.bat on 3/29/2018 where Trout went 0-6 with a strikeout.  As you can see, Trout started relative slowly over the first week of the season but since April 8, 18 of his last 23 games have been positive raa.bat.  If he keeps up that kind of production, this kid might have a future in the major leagues…..

Screen Shot 2018-05-05 at 1.54.28 PM.png

Cheers.

JSM 2018 Data Art show

SUBMIT TO 2018 JSM DATA ART SHOW 

JSM Data Art show history

Chicago 2016 

In the summer of 2016, JSM was held in Chicago.  I live in Chicago had the idea to try to have a data art show somewhere in Chicago to coincide with JSM.  So I tweeted out the idea asking if anyone knew a venue that would be appropriate for hosting this.  Well, through the power of twitter, the good people at the ASA suggested I have the data art show at JSM.  So we sent out a call for art and ended up with a nice little data art show featuring Alisa Singer, Craig Miller, Elizabeth Pirraglia, Gregory J. Matthews, Marcus Volz , and Jillian Pelto.

Alisa_Singer_Carbon_Emissions_in_the_Industrial_Age.jpg

Carbon Emissions in the Industrial Age
by Alisa Singer

Volz_Marcus_MountainRunningProfiles.jpeg

Mountain Running Profiles
by Marcus Volz

 

Baltimore 2017

In 2017, we did the show again, this time in Baltimore featuring work by Lucy D’Agostino McGowan and Maëlle Salmon, Gregory J. Matthews, and Elizabeth Pirraglia.  It was a little bit smaller in terms of participation, but I blame myself mostly.  I had a baby at the end of 2016 so I spent a lot less time publicizing the 2017 show, and we had far fewer applicants.

RCatLadies_full

R Cat Ladies by Lucy D’Agostino McGowan and Maëlle Salmon

chess_FischerImmortal---Gregory-Matthews_full

Fischer’s Immortal Game by Gregory J. Matthews

 

Vancouver 2018

So for the 2018 show in Vancouver, I want to get the word out that there will be another show and to encourage all of you to apply.  (Yes you!)  If you want to apply, you have until May 15 to submit your work for consideration to art.show.jsm@gmail.com.  Full details of how and where to submit your work can be found here.  And if you don’t want to apply yourself, please send this to someone who you think might be interested in submitting work.

Also, a few more favors to ask of you

  1. I will be unable to attend JSM this year for the first time in TEN years because I am having baby number 2 in July.  So I’m looking for someone who will be attending the event who can act as a sort of coordinator for the event.  This is minimal effort and basically requires you to check that it gets set-up.  I’d also like you to take some pictures of the event and send them to me.
  2. Would anyone be willing to set my work up at JSM if I ship in to the convention center?  And then ship it back to me?  I will, of course, cover all the costs of shipping.
  3. If anyone reading this knows someone in Vancouver who is connected to the local art world there, I would appreciate them forwarding this to them.

Cheers.

 

 

 

 

The blog has moved!

Maybe I should move to netlify too?

StatsbyLopez

To facilitate an easier sharing of code and figures, I’ve started a RMarkdown blog, which you will find at http://statsbylopez.netlify.com/. All new blog posts will be shared at this new site.

I’m going to keep the WordPress site active for the time being, so past articles aren’t going anywhere. In the meantime, thanks for four years of reading and fun! Hopefully the next site will be a success.

View original post

NCAA Tournament Thoughts and Picks

Round of 64

I think generally the committee did a pretty good job this year, at least in terms of first round games.  The only lower seeded teams that I have favored in the first round are Florida St. over Missouri and Butler over Arkansas (though I have Houston as only a tiny favorite over San Diego State).  As far as most likely possible upsets? Here are the double digit seeds I think are most likely to win in round 1 (in order of likelihood) :

(11) Loyola-Chicago over (6) Miami (That’s not what my model says, but I’m contractually obligated to say this)

(11) San Diego State over (6) Houston

(10) Texas over (7) Nevada

(10) Providence over (7) Texas A&M

(12) Davidson over (5) Kentucky

(12) New Mexico St over (5) Clemson

(11) St. Bonaventure over (6) Florida

(12) Murray State over (5) West Virginia

(12) South Dakota State over (5) Ohio State

Then if you want to get crazy and go for some big time first round upsets I would pick these (in order of likelihood):

(14) Montana over (3) Michigan

(13) Marshall over (4) Wichita State

(13) Charleston over (4) Auburn

(14) Wright State over (3) Tennessee

(14) S.F. Austin over (3) Texas Tech

(15) Georgia State over (2) Cincinnati

Round of 32

Nothing really interesting here.  I have all the 1-4 seeds favored to make this round with the exception of Wichita State, which I have as an underdog to West Virginia.

Looking to pick an upset?  Most likely 5 seed or higher to make the Sweet Sixteen:

(5) West Virginia

(5) Clemson

(6) Florida

(5) Kentucky

(8) Seton Hall

(6) Houston

(11) San Diego State

(10) Butler

(7) Nevada

(7) Texas A&M

Want to get real crazy with it?

(12) Davidson

(12) New Mexico State

(11) St. Bonaventure

(13) Buffalo

(12) Murray State

Sweet 16

Here is where things start to get a bit interesting.  I have Villanova, Purdue, Kansas, Duke/Michigan St*, North Carolina, Cincinnati, Virginia, and Gonzaga.

I think the two most potentially interesting games in this round are Gonzaga vs Xavier and Duke vs Michigan St.  I think Xavier is way overrated and Gonzaga is underrated so I think it will be interesting to see if Xavier lives up to its one seed here.  The other game, Duke vs Michigan St, I think would be a good Final Four matchup.  I’m taking whoever wins this game to go all the way to the finals.  I just have no idea who is going to win this game, so I’m not picking the winner of that game, but I am advancing them in the bracket as a /.  It’s my blog and I can do what I want.

Looking to pick a double digit seed to the Elite 8?  How about these teams:

(11) San Diego State

(12) New Mexico State

(12) Davidson

(11) St. Bonaventure

(15) Georgia State

Elite 8

Alright.  I’ve got Virginia over Cincinnati.  Villanova over Purdue.  Duke/Michigan State over Kansas.  And North Carolina over Gonzaga.  That’s 3 ACC teams.  Ugh.  And Duke.  The most Ugh.

I think Butler and Texas A&M as Final Four teams are interesting picks as well as Seton Hall and Miami.

Final 4

I’m taking Virginia over North Carolina and Duke/Michigan State over Villanova.

 

Finals

I’m taking Virginia over Duke.

Want some cray picks to win the championship?

(5) West Virginia

(5) Ohio State

(5) Clemson

(9) Florida State

(9) Seton Hall

(6) Florida

If you need me Friday morning, I’ll be crying in a corner next to the remains of my bracket.

Oh.  And for god’s sake NCAA, pay the players!

Cheers.

 

 

 

 

 

Of the four number 1 seeds, Virginia, Villanova, Kansas, and Xavier, Xavier is far and away the weakest number 1 seed in this tournament (I have them ranked 15th overall).